

INDIAN SCHOOL AL WADI AL KABIR

Practice paper

SUB: Mathematics (041)

Date: 11/11/2023

Time Allowed :3 hours

Maximum Marks: 80

<u> </u>	I T					
Genera	al Instructions:					
	 This Question paper contains - five sections A, B, C, D and E. Each section is compulsory. However, there are internal choices in some questions. Section A has 18 MCQ's and 02 Assertion-Reason based questions of 1 mark each. Section B has 5 Very Short Answer (VSA)-type questions of 2 marks each. Section C has 6 Short Answer (SA)-type questions of 3 marks each. 					
	5. Section D has 4 Long Answer (LA)-type questions of 5 marks each. 6. Section E has 3 source based/case based/passage based/integrated units of					
Q.No	assessment (4 marks each) with sub parts. SECTION A (MCQ)	Mark				
1.	Which of the following are disjoint sets?	1				
	ASet of natural numbers, set of whole numbersBSet of integers, set of rational numbers					
	C Set of whole numbers, set of odd numbers, set of even numbers					
2.	If X and Y are two sets such that $X \cup Y$ has 50 elements, X has 28 elements and Y has 32 elements, how many elements does $X \cap Y$ have?					
	A 12 B 22 C 10 D 110					
3.	The mean deviation about the median for data: 6, 7, 10, 13, 14, 3, 8.	1				
	A 2.75 B 3 C 0 D 1					
4.	If $\left(\frac{2x+1}{3}, 2x+y\right) = (1,4)$, then values of x and y	1				
	A $x = 1, y=2$ B $x = 0, y=2$ C $x = 2, y=2$ D $x = 1, y=1$					
5.	The solution of inequality $\frac{x}{2} + \frac{x}{3} + \frac{x}{4} \le 13$	1				
	A $x \in [12, 13]$ B $x \in [12, \infty)$ C $x \in (-\infty, 12]$ D $x \in (-\infty, 13]$					
	Pag	ge 1 of 6				

	ate: cos		_		1		_
A	$\frac{1}{\sqrt{2}}$	В	$\frac{\sqrt{3}}{2}$	С	$-\frac{1}{\sqrt{2}}$	D	$-\frac{\sqrt{3}}{2}$
<i>cos</i> 1 ⁰	. <i>cos</i> 2º.	cos3º	<i>cos</i> 179 ⁰	⁾ . <i>cos</i> 18	$0^{0} =$		
Α	-1		1	С	0	D	8
Simp	lified j		$of i^4 + i^3$				
Α	i	B	1	С	-1	D	0
The n	nultiplica	ative in	verse of 3	+ 4 <i>i</i>			
A	3 – 4i	В	$\frac{3}{25} + \frac{4i}{25}$	С	$\frac{3}{25} - \frac{4i}{25}$	D	$\frac{25}{3} + \frac{25i}{4}$
If $\left(\frac{1+1}{2}\right)$	$(\frac{1}{2})^m = 1$.then t	the least i	oositiv	e value of m	ı	
(1	2	В	4	С	6	D	8
	$= nC_{8}$						
A	10	В	45	С	120	D	720
	$\frac{1}{8!} = \frac{x}{9!}$			C	120	D	720
Α	225	В	49	С	64	D	81
Numb	er of ch	ords wl	nich can be	e drawn	by selecting	21 poin	ts of a circle
Α	210	В	420	С	21	D	441
If the	-	ent of x		xpansi	on of $(1+x)$) ^m is 6	
	the valu	-		C	4	D	C
\mathbf{A}	1	B	6	C	4	D	2
1) (3,	5) (2, 5	Junu (к,—9)иге	counte	ear then $k =$		
Α	4	B	-4	С	2	D	10
each o	observat	ion is n		by 3, the	ons are 8 and in the new me	· •	ectively. If new variance
A 24	4 and 3	6 B 2	24 and 12	С	8 and 12	D	8 and 6
If sun differ		rms of a	an AP is <i>S</i> ₁	$n_{n} = 3n^{2}$	+2n, then	the com	nmon
A If AM		B M of tw	6 o numbers	C are 7.5	11 and 6 respect	D tively, t	16 hen the
numb	010 010						

A CCEDTION DEAGON DACED OLIECTIONS

	AS	SERTION-REA	SON BASED QUE	STIONS	
	•	atement of Reaso	nd 20), a statement of on (R). Choose the o	of assertion (A) is correct answer out of	
	A) Both A and F	R are true and R	is the correct explar	ation of A.	
	B) Both A and R	are true but R i	s not the correct exp	planation of A.	
	C) A is true but		-		
	D) A is false but	R is true.			
19.	 (A) The 5th, 8th, and s are consec (R) If p, q and s 	utive terms of an	nother GP.	respectively then p, q	1
	А	В	С	D	
20.	odd natural num is 64.	bers less than 5, s <i>m</i> elements an	then the number of	8 and B is the set of relations from A to B nts then the number of	1
	А	В	С	D	
		SE	CTION B		
21.	Write the relatio roster form.	$n R = \{(x, y): 2x\}$	+ y = 8, x and y are	whole numbers} in	2
22.	If $(x - 3i)(3 + find the real v$	•	he conjugate of 9	+ 7 <i>i</i> ,	2
23.	Find r if $5_{P_r} =$	2.6_{P}			2
	- T	17-1	OR		
	Find the number	of sides of a co	nvex polygon if it h	as 35 diagonals.	
24.	How many term	ns of the GP 3, 6	, 12, to be added OR	to get a sum 765?	2
	If a, b and c are x, y and z are i		$=b^{\frac{1}{y}}=c^{\frac{1}{z}}$, then pr	rove that	2
25	$If \ (1+i)^3 = x$		$l x^2 + y^2.$		2
		SE	ECTION C		
26.	Evaluate: $tan\frac{\pi}{2}$	OR			3
	0	∃ III quadrant,	then evaluate cos	$S\frac{A}{2}$.	
				Pa	ge 3 o

Page **3** of **6**

27. Solve the following linear inequalities and represent the solution on a number line: $5(2x - 7) - 3(2x + 3) \le 0; \quad 2x + 19 \le 6x + 47.$

28. How many words can be formed with or without meaning using all letters 3 of the word 'INDIA'? If all these words are arranged in the dictionary order, what will be the rank of the word 'NADII'

OR

If sum of two positive numbers is equal to 6 times their geometric mean, then prove that the numbers are in the ratio $3 + 2\sqrt{2} : 3 - 2\sqrt{2}$

29. Find the equation of a line passing through the intersection of lines 2x + 3y = 1 and x-y=5 and perpendicular to the line whose equation is 5x + y - 7=0

30.

Expand and simplify: $(\sqrt{3} + \sqrt{2})^6 + (\sqrt{3} - \sqrt{2})^6$ OR

Find the term independent of x in the expansion of $\left(\frac{x^2}{3} - \frac{1}{2x}\right)^{12}$

31.

If $A = \{x: x \text{ is a prime number less than 8}\}, B = \{y: y^2 \le 17, y \in N\}$ then write the following in roster form. a) $A \cup B$ b) $A \cap B$

SECTION D Case study-based Questions

32. A set of functions are given below:

$f(x) = \sqrt{x}$	$g(x) = \sqrt{9 - x^2}$	$h(x) = x^2 + 1$
p(x) = x-1 + 1	$t(x) = \sqrt{x - 1}$	u(x) = 3sinx

Based on the above, answer the following questions:

- i) Function(s) with domain $[0, \infty)$.
- ii) Function(s) with range [0, 3]
- iii) Evaluate: f(9) + g(0) h(1) OR Sketch the graph of f(x)

3

3

3

3

4

33. Hari appears in an examination. While reading the instructions he observed that the question paper consists of 12 questions divided into two parts I and II, containing 5 questions and 7 questions respectively. Based on the information given answer the following:

- a) If Hari is required to attempt 8 questions in all by selecting exactly 4 questions from section I, then in how many ways can he select the questions?
- b) If Hari is required to attempt 10 questions in all by selecting equal number of questions from each section, then in how many ways can he select the questions?
- c) If Hari is required to attempt 8 questions in all by selecting at least 4 questions from section I, then in how many ways can he select the questions? OR

If Hari is required to attempt 8 questions in all by selecting at most 3 questions from section I, then in how many ways can he select the questions?

34. A group of students are given a project to make a convex polygon. The consecutive angles need to be 120°, 125°, 130°
Based on the above information answer the following:

- a) Write the sum of n terms of the given AP
- b) Find the number of sides of the polygon.

SECTION E

OR

35. Find the foot of perpendicular to the line x-3y=4 from the point P(1, 2). Hence 5 find the image of P with respect to the given line.

Prove:
$$(1 + \cos\frac{\pi}{8})(1 + \cos\frac{3\pi}{8})(1 + \cos\frac{5\pi}{8})(1 + \cos\frac{7\pi}{8}) = \frac{1}{8}$$

Prove:
$$\frac{\sin 5x - 2\sin 3x + \sin x}{\cos 5x - \cos x} = \tan x$$

Page 5 of 6

5

4

37. Find mean, variance and standard deviation for the following frequency 5 distribution:

Class	30-40	40-50	50-60	60-70	70-80	80-90	90-100
f	3	7	12	15	8	3	2

38. The coefficients of three consecutive terms of the expansion $(1 + x)^n$ 5 *are in the ratio* 1: 3: 5. *Find n*.

OR

Expand and simplify $(1 + x)^5 + (1 - x)^5$.

Hence $evaluate(1 + \sqrt{2})^5 + (1 - \sqrt{2})^5 + (1 - \sqrt{2})^5$